
Get many screenshots at once using the
Screenshot API in python

Posted on May 8, 2021

In this tutorial, we develop a little code which does the following:

It takes URLs (or just domain names) from a text file, one URL per line;

It gets a screenshot with WhoisXML API’s Screenshot API for each URL with the default

settings;

The screenshot is saved into a specified subdirectory.

This comes in handy, e.g., when investigating a bunch of suspicious URLs to see what is there

without directly contacting them, or in the testing phase of web software development when a

number of screenshots of the system under development have to be verified at once. Very basic

Python skills are assumed, for any beginner to follow. We begin our code, in a file named

get_screenshots.py edited with your favorite code editor, with importing the necessary Python

libraries:

#!/usr/bin/env python3

import sys

import urllib

import urllib.parse

The need for each library will become clear on the way. In the beginning, we set up two variables

to represent our API key and the kind of credits we are using; consult the API documentation for

details, so our next lines in the code will be:

1 Whois API, Inc. | www.whoisxmlapi.com

https://website-screenshot.whoisxmlapi.com/api
https://website-screenshot.whoisxmlapi.com/api/documentation/making-requests
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

API_KEY = "my_api_key"

CREDITS = "DRS"

Replace "my_api_key" with your API key here; you may need "SA" instead of "DRS", depending

on your subscription. A word of caution: it is not the best idea to include your API key in this code,

as it would be better to store it in a separate, confidential file, but now we want to focus on our

task. Please do not distribute this code with your actual API key.

Now we need the sys library to parse command-line arguments: the first one will be the input file,

the second will be the directory where we store the screenshots, so the code continues like this:

INFILE = sys.argv[1]

OUTPUT_DIRECTORY = sys.argv[2]

Next, we open our file as a text file for reading, and loop through its lines:

with open(INFILE, 'rt') as infi:

 for line in INFILE.readlines():

raw_url = line.strip()

url = urllib.parse.quote(raw_url)

print(raw_url, url)

 infi.close()

It is now time to give our code a try. Let's set up an input file urls.txt with, e.g., the following

contents (note that we do not add the http or https prefix to the URLs as it isn't needed):

whoisxmlapi.com

duckduckgo.com/?q=whoisxmlapi&ia=web

The examples will be run from a bash command-line standard on Linux and MacOS systems;

running it from a Windows command-prompt is similar except that you do not need the "chmod"

2 Whois API, Inc. | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

commands and the "./" before the Python filename. So, we do in our bash:

chmod +x get_screenshots.py

./get_screenshots.py

which will result in the output:

whoisxmlapi.com whoisxmlapi.com

duckduckgo.com/?q=whoisxmlapi&ia=web duckduckgo.com/%3Fq%3Dwhoisxmlapi%26ia%3Dweb

To explain this part of code, we use .strip() to get rid of eventual white spaces or newline

characters, and we use urllib.parse.quote() to quote special characters like "?"; it is prescribed in

the API documentation. The effect is demonstrated in the output where the raw and the quoted

URLs are printed next to each other.

Time to develop our code to actually get the screenshots by the API calls. Let us show now our

complete, final code:

#!/usr/bin/env python3

import sys

from urllib.request import urlopen

from urllib.parse import quote

import json

API_KEY = "MY_API_KEY"

CREDITS = "DRS"

INFILE = sys.argv[1]

OUTPUT_DIRECTORY = sys.argv[2]

3 Whois API, Inc. | www.whoisxmlapi.com

https://website-screenshot.whoisxmlapi.com/api/documentation/making-requests
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

with open(INFILE, 'rt') as infi:

 for line in infi.readlines():

raw_url = line.strip()

url = quote(raw_url)

filename = OUTPUT_DIRECTORY + "/" + os.path.sep +

 "".join(c for c in raw_url if c.isalnum()) + '.jpg'

print("Getting screenshot for %s"%raw_url)

image=urlopen(

 'https://website-screenshot.whoisxmlapi.com/api/v1?apiKey=%s&url=%s&credits=%s'%(API_KEY, url, CREDITS)).read()

print("Saving into %s"%filename)

with open(filename, 'wb') as outfile:

 outfile.write(image)

 outfile.close()

 infi.close()

Note that we have generated yet another derivative of the URL, the filename. This consists of the

specified output directory, then the system's separator character of subdirectories, os.path.sep

which is / on UNIX-style systems and \ on Windows, and then a version of the URL in which only

the alphanumeric characters are kept. This latter is generated by going through the characters of

raw_url and appending the next one to the final string if and only if it is alphanumeric.

The image is obtained from the API with a simple "GET" request, and the result is stored in the

image variable, which is then written into the output file in binary mode. Let's give it a try. Certainly,

we need to create the screenshots directory if it does not exist yet:

mkdir screenshots

./get_screenshots.py urls.txt screenshots

The script says:

Getting screenshot for whoisxmlapi.com

4 Whois API, Inc. | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Saving into screenshots/whoisxmlapicom.jpg

Getting screenshot for duckduckgo.com/?q=whoisxmlapi&ia=web

Saving into screenshots/duckduckgocomqwhoisxmlapiiaweb.jpg

And indeed, in the screenshots directory, we have the screenshots of the respective pages, e.g., in

duckduckgocomqwhoisxmlapiiaweb.jpg we can see:

Certainly, our short little script has its shortcomings, including the following:

5 Whois API, Inc. | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

It will not check the arguments we gave. If there aren't at least 2 command-line arguments, it

will stop with an error. Neither will it check if the input file or the output directory exists.

Python will give us its standard error messages to reflect this.

It does not handle a possible failure of the API call. In this case, either the script will stop with

an error message or the text message from the API will be stored in the resulting .jpg-named

file.

It does not support special options of the API, such as device emulation, screen resolution,

etc.; there are useful ones available, as described in the API documentation.

It gets screenshots once at a time. The API calls could be done using multiple threads which

would make things faster.

With a bit of a routine in Python programming, these shortcomings can easily be eliminated, but

this is beyond the scope of this introductory tutorial. We encourage the reader to extend and

customize the code.

6 Whois API, Inc. | www.whoisxmlapi.com

https://website-screenshot.whoisxmlapi.com/api/documentation/making-requests
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

